如今,企业都嗅到大数据带来的巨大价值,纷纷发力大数据领域,其中,建立大数据分析能力,是企业运用大数据的关键环节。领先的企业主要从四个方面入手建立自己的大数据分析能力:高质量的数据、先进的工具、精通数据的员工以及支持分析决策的流程和激励机制。
要素一:数据
任何一个企业都首先需要制定一个数据收集和整理的策略规划,这一规划必须明确定义如何利用大数据为企业的整体发展战略创造价值。好的数据政策明确定义了“什么是有用的数据”以及“如何从数据看我们的业务”。这些基本定义是一个企业如何建立自己的数据分析能力并将自己与竞争对手区隔开来的第一步。“什么是有用的数据”是所有数据政策的出发点和基础。
要素二:工具
先进的分析技术和大数据工具的进步如此之快,他们正以前所未有的方式帮助公司获取新的统计角度和结果。Hadoop、HPCC和NoSQL等工具和平台迅速崛起带来了全新的分析视角和机会;基于成熟的分析、视觉化以及数据管理的全新生态系统也以日新月异的速度改变着企业的分析能力。如今,可提供这类工具的供应商不胜枚举,开放资源的开发商数量更是不计其数。不过,令人感到些许意外的是,在我们的访谈中,仅有38%的企业表示他们曾使用过这些工具。
要素三:人员
成功的团队往往可以融合数据、技术和业务等各方面的人才来构建这一能力。以乐队为类比:团队的成员必须各自拥有不同的技能,但这些技能又有一些交叉重叠,同时他们非常了解互相之间如何进行有效和高效的沟通和协作。成功的大数据分析团队亦如此,我们需要:
数据科学家,提供有关统计、相关性和质量等的专业技能
商业分析师,从商业的角度出发,甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序
技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案
要素四:决心
顶尖的企业将大数据分析的理念植入到组织当中,明确定义希望通过大数据达成的目标并运用数据推动决策。CEO和高层领导团队将枯燥抽象的数据分析与实际的公司经营绩效提升的紧密关系展示给企业的每一位员工:不论是通过改进现有的产品和服务、优化内部流程、构建新产品和服务或是转变商业模式等等。表现优异的公司无一例外地围绕数据构建组织并恪守数据驱动型决策的承诺。
t评论:
很多企业在大数据分析能力构建方面并不尽如人意,企业若想在大数据分析能力构建方面取得出色表现,必须在以上四个要点的基础上,做到均衡的完美表现,而更多企业则在其中一两个领域较为突出,其实,每个方面的成功都离不开其他方面的优势支持。