一、结合智能计算的大数据分析成为热点,包括大数据与神经计算、深度学习、语义计算以及人工智能其他相关技术结合,成为大数据分析领域的热点。大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。要达到这一目标,需要提升对数据的认知计算能力,让计算系统具备对数据的理解、推理、发现和决策能力,其背后的核心技术就是人工智能。近些年,人工智能的研究和应用又掀起新高潮,这一方面得益于计算机硬件性能的突破,另一方面则依靠以云计算、大数据为代表的计算技术的快速发展,使得信息处理速度和质量大为提高,能够快速、并行处理海量数据。
二、数据科学带动多学科融合,但是数据科学作为新兴的学科,其学科基础问题体系尚不明朗,数据科学自身的发展尚未成体系。在大数据时代,许多学科表面上看来研究的方向大不相同,但是从数据的视角来看,其实是相通的。随着社会的数字化程度逐步加深,越来越来多的学科在数据层面趋于一致。可以采用相似的思想来进行的统一的研究。数据科学作为一个与大数据相关的新兴学科出现,真正支撑大数据发展的学科跨越还没有出现。针对大数据处理的理论研究上,新型的概率和统计模型将是主要的研究工具,学科基础理论的突破还难于在2015年出现。
三、跨学科领域交叉的数据融合分析与应用将成为今后大数据分析应用发展的重大趋势。大数据技术发展的目标是应用落地,因此大数据研究不能仅仅局限于计算技术本身。由于现有的大数据平台易用性差,而垂直应用行业的数据分析又涉及到领域专家知识和领域建模,目前在大数据行业分析应用与通用的大数据技术之间存在很大的鸿沟,缺少相互的交叉融合。因此,迫切需要进行跨学科和跨领域的大数据技术和应用研究,促进和推动大数据在典型和重大行业中的应用和落地。
四、大数据将与物联网、移动互联、云计算、社会计算、等热点技术领域相互交叉融合,产生很多综合性应用。近年来计算机和信息技术发展的趋势是,前端更前伸,后端更强大。物联网与移动计算加强了与物理世界和人的融合,大数据和云计算加强了后端的数据存储管理和计算能力。今后,这几个热点技术领域将相互交叉融合,产生很多综合性应用。
五、大数据多样化处理模式与软硬件基础设施逐步夯实。内存计算将继续成为提高大数据处理性能的主要手段。以Spark为代表的内存计算逐步走向商用,并与Hadoop融合共存,专为大数据处理优化的系统和硬件出现,大数据处理多样化模式并存融合,一体化融合的大数据处理平台逐渐成为趋势。其中有一个观点这种多元化一定程度上成为一体化,未来大数据多样化处理模式并存并且有可能成为一体化的平台。
六、大数据安全和隐私,这是我们第三年关于大数据热点问题趋势的预测,每一年这都是非常靠前关于大数据安全和隐私问题,这个反映我们专家我们用户一种期盼一种理解一种关注度,但是我们在大数据的安全和隐私保护方面,以及大数据涉及到资源国家主权这层面,实际上技术层面没有比较多的,这两年多以来没有比较长足的进步,这方面有一定的问题的,所以说大数据的安全持续令人担忧。
七、新的计算模式讲取得突破,去年前年我们在国内大量的去讲深度学习,今天我们发现一个很有意思的现象,在一些特定的领域发挥了作用,但是我们专家和工业界的人士更关注众包技术,也就是说可能未来不光是大数据讲深度学习。
八、各种可视化技术和工具提升大数据分析。进行分析之前,需要对数据进行探索式地考察。在此过程中,可视化将发挥很大的作用。对大数据进行分析以后,为了方便用户理解结果,也需要把结果展示出来。
九、大数据技术课程体系建设和人才培养是需要高度关注的问题。
十、开源系统将成为大数据领域的主流技术和系统选择。